
Equivariant BRST quantization and reducible symmetries

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 4649

(http://iopscience.iop.org/1751-8121/40/17/016)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/17
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 4649–4663 doi:10.1088/1751-8113/40/17/016

Equivariant BRST quantization and reducible
symmetries

Alice Rogers

Department of Mathematics, King’s College, Strand, London WC2R 2LS, UK

E-mail: alice.rogers@kcl.ac.uk

Received 1 February 2007, in final form 18 March 2007
Published 11 April 2007
Online at stacks.iop.org/JPhysA/40/4649

Abstract
Working from first principles, quantization of a class of Hamiltonian systems
with reducible symmetry is carried out by constructing first the appropriate
reduced phase space and then the BRST cohomology. The constraints of this
system correspond to a first class set for a group G and a second class set for a
subgroup H. The BRST operator constructed is equivariant with respect to H.
Using algebraic techniques analogous to those of equivariant de Rham theory,
the BRST operator is shown to correspond to that obtained by BV quantization
of a class of systems with reducible symmetry. The ‘ghosts for ghosts’
correspond to the even degree two generators in the Cartan model of equivariant
cohomology. As an example of the methods developed, a topological model is
described whose BRST quantization relates to the equivariant cohomology of
a manifold under a circle action.

PACS numbers: 11.15.−q, 11.10.Ef

1. Introduction

In this paper, we derive from first principles a BRST procedure for quantization of certain
symmetric Hamiltonian systems for which the constraints do not form a closed algebra, because
the symmetries are what is known as reducible. It is shown that the resulting BRST operator
compares to the standard BRST operator for the related irreducible symmetry in the same way
that in equivariant de Rham cohomology the equivariant derivative compares to the standard
exterior derivative. The auxiliary even generators which occur in this equivariant cohomology
correspond to the ‘ghosts for ghosts’ in the BV quantization of reducible symmetries first
formulated by Batalin and Vilkovisky [1, 2].

The underlying motivation for this work is a desire to understand the functional integral
methods which have proved so powerful in the quantization of theories with symmetry. An
example is constructed showing that the procedure leads to a full path integral quantization
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scheme complete with a quantum gauge-fixing procedure, so that quantum calculations are
possible.

In a standard symmetric Hamiltonian system, there is a set of ‘first class’ constraints
Ta, a = 1, . . . , m on the phase space of the system which are closed under Poisson bracket:

{Ta, Tb} = Cc
abTc.

The constraints are a reflection of the symmetry of the system under some group G, and the
true phase space of the system is the quotient of the constrained surface by the group action.
(A more intrinsic, group theoretic formulation is described below in section 2.) In the simplest
situation the coefficients Cc

ab are constants and the constraint algebra is a finite-dimensional
Lie algebra, but it is often the case that the coefficients Cc

ab are more general functions on the
phase space, although the system may still possess symmetry related to a finite-dimensional
Lie group, as explained in appendix A. There are however symmetric systems for which
the constraint algebra does not close, with some of the constraints being second class. The
purpose of this paper is to show that for a class of such systems there is an analysis in terms
of a symmetry group G acting equivariantly with respect to a subgroup H, and to derive the
corresponding BRST quantization scheme. The result is that the true phase space of the system
is obtained in two stages, first reducing the phase space by the action of H and then by G.
(Such two stage reduction is described extensively by Marsden, Misiolek, Ortega, Perlmutter
and Ratiu in [25, 26].)

The BRST operator obtained is equivalent to that used in BV quantization of first-order
reducible systems [1–3], but the derivation is more fundamental, using the algebraic features
of the constraints to construct the appropriate reduced phase space. The even, ghost number
two, fields of the BV formalism correspond to the degree two generators of the dual of the Lie
algebra of H in the Weil model of H-equivariant cohomology. The relation between equivariant
cohomology and BRST quantization of certain topological theories has been pointed out by
a number of authors, including Kalkman, Chemla and Kalkman and Ouvry, Stora and van
Baal [4–6]. In this paper, we take these ideas further and give general arguments based on
canonical quantization and the necessary modification of the Marsden–Weinstein reduction
process [7] for the open constrained systems studied, obtaining both a more general and a
more fundamental explanation of this connection.

The structure of the paper is that in section 2 we first describe the symplectic geometry
of a standard constrained system with closed algebra, including the moment map and the
Marsden–Weinstein reduction procedure [7] leading to the reduced phase space of the system
obtained after gauge redundancy has been removed. We then describe the more general
systems considered in this paper, and the corresponding reduced phase space. (In appendix A,
which relates to systems with closed constraint algebras as well as the more general systems
considered in this paper, we explain that the reduction process—and hence the BRST
procedure—are also applicable in the setting of a more general class of group action, in
which an infinite-dimensional group acts on the phase space, with a related action of the finite-
dimensional group G which is only local; this allows for the possibility of ‘structure functions’
and apparent variations in the constraint algebra.) In section 3 the standard Hamiltonian BRST
method, due to Henneaux [8], Kostant and Sternberg [9] and Stasheff [31] is reviewed, while in
section 4 the equivariant BRST operator appropriate for the more general constrained system
described in section 2 is constructed. Using methods adapted from equivariant de Rham theory,
various different but equivalent models of the BRST cohomology are presented. The class of
reducible symmetries which leads to the constrained systems studied in this paper is described
in section 5. In the final section a specific model exhibiting these structures is described.
The BRST operator is that constructed by Kalkman [4] and by Chemla and Kalkman [5],
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but our derivation is from a simple classical action. The model itself is equivalent to the
supersymmetric model introduced by Witten [10] and used by Witten and others to obtain
powerful equivariant localization techniques, as may be seen for instance in [11, 13–16, 23].

2. The reduced phase space of a partly open constraint algebra

In this section we will consider the classical dynamics of a Hamiltonian system defined on a
2n-dimensional symplectic manifold N on which an m-dimensional Lie group G acts freely
and symplectically on the left, with m � n. To establish notation, gy will denote the image of
the point y in N under the left action of g in G, and for each ξ in the Lie algebra g of G, ξ will
denote the corresponding vector field on N . The group action is required to be Hamiltonian,
so that there exists a map (referred to as the constraint map) T : g → F(N ), ξ �→ Tξ (where
F(N ) denotes the space of smooth functions on N ) which satisfies the conditions

Lξ f = {Tξ , f } Tξ (gy) = TAdgξ (y) (1)

for all f in F(N ), y in N and g in G [20]. Here {, } denotes the Poisson bracket with respect
to the symplectic form on N . This is the standard set-up for a constrained Hamiltonian
system: the constraint functions are the m functions Ta

∼= Tξa
corresponding to a basis

{ξa|a = 1, . . . , m} of g, and the constraint submanifold C is the subset of N consisting
of points y such that Ta(y) = 0 for a = 1, . . . , m. More intrinsically, C is the set φ−1(0),
where φ : N → g∗ is the moment map, which is the transpose of the constraint map T and
thus defined by

〈φ(y), ξ 〉 = Tξ (y) (2)

for all y in N and ξ in g. By properties (1) of the map T ,C is invariant under the action
of G; the Marsden–Weinstein reduction theorem [7] states that the quotient manifold C/G

is a symplectic manifold with a symplectic form ν determined uniquely by the condition
π∗ν = ι∗ω, where ω is the symplectic form on N , ι : C → N is inclusion and π : C → C/G

is the canonical projection. This result can be proved using theorem 25.2 of [20], which
establishes that in certain circumstances if ω is a closed form on a manifold X then the set of
vector fields ξ on X which satisfy

ιξω = 0 (3)

forms an integrable distribution, and the corresponding foliation is fibrating; further, if
ρ : X → M is the fibration, there is a symplectic form ν on M uniquely determined by
ω = ρ∗(ν). The symplectic manifold obtained by this two stage reduction process is referred
to as the reduced phase space of the system and will be denoted N //G. It is the true phase
space of the system; however it is in general a rather complicated space, even when N is
simple, and may not admit a polarization as required in geometric quantization to determine
the position/momentum split. The BRST approach, which is described in section 3, is a
cohomological formulation which readily allows a quantization scheme which can be used for
path integral quantization, provided this was the case for the unconstrained phase space. The
situation described so far is a rather idealized, oversimplified one, most real physical systems
involve quantum field theory rather than quantum mechanics, and the group action can be
identified locally rather than globally. There is a discussion of these matters in appendix A,
in the rest of this section we will continue to work in the idealized framework so that the key
ideas can be presented in a simple manner.

A modification of this reduced phase space structure will now be described, which will
lead in section 4 to a construction which aims to provide the appropriate modification of the
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BRST procedure for a system with what is called reducible symmetry. This concept was first
introduced and studied by Batalin and Vilkovisky [1, 2] in the Lagrangian formalism, and is
discussed in section 5. A key feature is that there is only a partial symmetry of the system
under the action of a Lie group. In the Hamiltonian framework described above, this means
that only some of the constraints are satisfied. An important idea in the current paper is that
the missing constraints can be incorporated into the formalism by introducing new variables.
At this stage it is not clear whether the procedures described are applicable to all first-order
reducible systems, further work is required here, but it is clear that the method described does
provide a more fundamental account of the BRST operator in the reducible case, clarifying
the role of ‘ghosts for ghosts’, and relating them to the even generators of S(gd) which appear
in the de Rham models of equivariant cohomology.

In the canonical setting, the ingredients of the systems to be considered again include a
Hamiltonian action of a Lie group G on a symplectic manifold N . Additionally, G has an
Abelian subgroup H with a particular property, and the constraints take the form

Ta − 〈v, ξa〉 = 0, (4)

where v is an arbitrary element of h∗, the dual of the Lie algebra h of H and T is the constraint
map as before. (This form of the constraints is related to the Lagrangian approach to reducible
symmetries in section 5.) Constraints of this form are possible if we extend the phase space
N by taking the Cartesian product with T ∗H .

The property required of H, which among other things ensures that h∗ can be uniquely
identified as a subspace of g∗, is that there is a subspace k of g such that

h ⊕ k = g and [h, k] ⊂ k. (5)

(An example is when G is semi-simple and h is a Cartan subalgebra of g.) This property
means that h∗ can be identified as the subspace of g∗ whose elements u satisfy 〈u, ξ 〉 = 0 for
all ξ in k. It will be useful to use a basis

{ξα, ξr |α = 1, . . . , l, r = 1 + l, . . . , m} (6)

of g, with {ξα|α = 1, . . . , l} a basis of h (l being the dimension of H) and {ξr |r = 1, . . . , m− l}
a basis of k, and use the notational convention that Greek letters are used as indices for elements
of bases of h while Latin indices from the second half of the alphabet are used for k and from
the first half for g as a whole. The only structure constants Cc

ab with respect to this basis which
are non-zero are then those of the form Cs

αr , C
t
rs and Cα

rs .
The extended phase space N ′ = N × T ∗H has a symplectic form

ω′ = ω + dvα ∧ dwα, (7)

where the variables vα are interpreted as coordinates on the cotangent space at each point
of H, which is identified with h∗ and wα are coordinates on H. (The summation convention
for repeated indices is used except when explicitly stated to the contrary.) In terms of these
coordinates the constraints take the form

vα − Tα = 0, α = 1, . . . , l and Tr = 0, r = 1 + l, . . . , m, (8)

where vα = 〈v, ξα〉 is a coordinate on the extended phase space N ′. These constraints do not
in general form a closed algebra under the Poisson bracket, instead one has a partly second
class system, neither do they correspond to a G action on N or N ′.

These problems stem from the fact that we have so far overlooked the fact that the variables
vα, α = 1, . . . , l have canonical conjugates wα which are also constrained. By taking this into
account it will be shown that the reduced phase space for the system is in fact N ′//(G � H),
where G � H denotes the semi-direct product of G and H corresponding to the action of H
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on G by inverse conjugation and the action of G � H on N ′ corresponds to the constraint
map whose components with respect to bases {ξα, ξr} of g and {λα, α = 1, . . . , l} of h are
respectively

Tα, Tr and vα − Tα. (9)

(The Lie algebra of G � H corresponds to that of the direct product G × H with additional
non-zero brackets [λα, ξr ] = −Cs

αrξs .)
This reduced phase space will be obtained from the physical constraints (8) if vα, α =

1, . . . , l are regarded as dynamical variables, with canonically conjugate momenta wα . Since
the original Lagrangian from which the constraints have been derived will not have had any
dependence on the time derivative of vα , additional constraints wα = 0, α = 1, . . . , l must
also be satisfied. Thus we have a system with m + l primary constraints Tr, vα − Tα,wα, r =
1 + l, . . . , m, α = 1, . . . , l.

There are also secondary constraints: since the Hamiltonian of the system is independent
of wα , the equation of motion for vα is simply v̇α = 0, so that vα is constant. We choose
vα = 0, which then gives us l secondary constraints. The full set of constraints is thus

{Tr, Tα − vα, vα,wα, r = 1 + l, . . . , m, α = 1, . . . , l}. (10)

From the Poisson bracket {vα − Tα,wβ} = −δβ
α we see that the constraints wα, vα − Tα, α =

1, . . . , l form a second class set which reduces the extended phase space N ′ to N ′//H under
the action of H generated by vα − Tα , which we can represent explicitly as the subspace of
N ′, where uα = 0 and vα − Tα = 0 for α = 1, . . . , l with the symplectic form whose Poisson
brackets are given by the Dirac bracket

{f, g}D = {f, g} − {f, vα − Tα}{g,wα} + {g, vα − Tα}{f,wα}. (11)

The remaining constraints Tr, r = 1 + l, . . . , m and vα, α = 1, . . . , l form a first class
set on this reduced space (where we can in fact replace vα by Tα), and the corresponding
reduction process then reduces this space further. This two stage reduction can be effected all
at once by the action of G � H as indicated above. A very comprehensive study of two stage
reduction, with applications in a number of classical contexts, has been made by Marsden,
Misiolek, Ortega, Perlmutter and Ratiu in [25, 26].

In the following section, the BRST quantization procedure for a closed constraint algebra
will be described, while in section 4 it will be shown how this construction may be modified
to take into account the reduced phase space of the kind just described, corresponding to an
action of G � H on an extended phase space.

3. The BRST procedure for a closed constraint algebra

In this section, we review the BRST procedure for the standard reduced phase space
corresponding to a closed constraint algebra. The reduced phase space is the space
N //G = C/G constructed in section 2, with C = φ−1(0). The formulation of BRST
cohomology in the canonical setting was first given by Henneaux [8] and by McMullan
[28], providing a powerful development of the BFV construction of the vacuum generating
functional of a gauge theory [1, 12, 17–19]. The BRST construction was expressed in a more
abstract mathematical setting by Kostant and Sternberg [9] and by Stasheff [31, 32].

The idea is to construct a BRST operator Q whose zero degree cohomology theory agrees
with the space of smooth functions F(N //G) on the reduced phase space, and also to construct
a super phase space so that the BRST operator Q is implemented by Poisson bracket. The
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exposition here largely follows [9]. The operator is constructed in two stages. First, we define
a superderivation

δ : �q(g) ⊗ F(N ) �→ �q−1(g) ⊗ F(N )

by its action on generators:

δ(π ⊗ 1) = 1 ⊗ Tπ, δ(1 ⊗ f ) = 0, (12)

where π ∈ g and f ∈ F(N ). It follows immediately that δ2 = 0. (This is the Koszul
complex, as seems first to have been observed by McMullan.) Also Ker0 δ = F(N ) while
Im0 δ = δ(g)F(N ). Now δ(g)F(N ) is the ideal of F(N ) consisting of functions which vanish
on the constraint surface C, and the space of smooth functions on C can be identified with
F(N ) modulo this ideal. Thus F(C) ∼= H0(δ), and the first part of the construction of the
BRST operator has been achieved.

To complete the construction, suppose that K is a g module, and define the operator

d : K → g∗ ⊗ K

by setting 〈dk, π〉 = πk for all π in g and k in K. This operator can be extended to become a
superderivation

d : �p(g∗) ⊗ K → �p+1(g∗) ⊗ K

by defining dη for η in g∗ to be the exterior derivative of η regarded as a left invariant one form
on G. (This, as observed by Stasheff, is the standard Chevalley–Eilenberg differential for the
Lie algebra cohomology of G.) Using the fact that d on g∗ is the transpose of the bracket on
g, it can be shown that d2 = 0. Also, it follows from the definition that Ker0 d is equal to the
set Kg of g invariants in K while Im0 d is zero. Thus H0d is equal to Kg.

If we now set K = �(g) ⊗ F(N ), with the g action on K defined by

ξ(π1 ∧ · · · ∧ πq ⊗ f ) =
q∑

r=1

π1 ∧ · · · ∧ πr−1 ∧ [ξ, πr ] ∧ πr+1 ∧ · · · ∧ πq ⊗ f

+ π1 ∧ · · · ∧ πq ⊗ {Tξ , f }, (13)

then the g action commutes with the action of δ on K, so that δ and d commute and d is
well defined on the δ cohomology groups of K. Thus H0(H0(�(g∗) ⊗ �(g) ⊗F(N ))) is well
defined and equal to the g invariant elements of F(C), and thus to F(N //G).

The properties of the two differentials may be summarized in the diagram

�p(g∗) ⊗ �q(g) ⊗ F(N )
δ→ �p(g∗) ⊗ �q−1(g) ⊗ F(N )

d ↓

�p+1(g∗) ⊗ �q(g) ⊗ F(N )

and we have a double complex

D : �(g∗) ⊗ �(g) ⊗ F(N ) → �(g∗) ⊗ �(g) ⊗ F(N ).

with D = d + (−1)pδ. If we define the total degree of an element of �p(g∗) ⊗ �q(g)⊗F(N )

to be p−q, then D raises degree by 1. Under certain technical assumptions [9] H0D is equal to
H0(H0(�g∗ ⊗�g⊗F(N ))), so that we have constructed a complex whose zero cohomology
is equal to F(N //G), in other words to the observables on the true phase space of the system.

If we now construct the (2n, 2m)-dimensional symplectic supermanifold

SN = N × R
0,2m
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with symplectic form ω + dπa ∧ dηa , where πa, η
a, a = 1, . . . , m are natural coordinates on

the R
0,2m factor, then F(SN ) ∼= �(g∗) ⊗ �(g) ⊗ F(N ) and D can be realized by taking the

Poisson bracket with the function

Q = ηaTa − 1
2Cc

abη
aηbπc.

As a result the Poisson brackets with respect to the symplectic form ω + dπa ∧ dηa close
on the zero cohomology of D and correspond to the Poisson brackets on the reduced phase
space. Quantization of this system is straightforward, given a quantization on the original
unconstrained phase space N . The Hilbert space of states is taken to be H ⊗ F(R0,m), where
H is the space of states for N . A typical element is fa1...ap

ηa1 · · · ηap

where each fa1...ap
is in H

and ηa, a = 1, . . . , m are natural coordinates on R
0,m. (If the G action is local, in the manner

described in appendix A, then the super phase space and the space of states may be twisted
products rather than simply Cartesian products, and the operators δ and d defined locally but
in a globally consistent manner.)

Observables on the super phase space will be operators of the form

A
b1...bq

a1...p ηa1
. . . ηap

πb1 . . . πbq

where each A
b1...bq

a1...ap
is an observable onN . The observables ηa , which are known as ‘ghosts’, are

represented on states as multiplication operators, while the ghost momenta πb are represented
by

πb = −i
∂

∂ηb
. (14)

An obvious but important consequence of this scheme is that the quantized BRST operator
Q has square zero. We can thus implement the BRST cohomology at the quantum level by
defining physical observables to be observables which commute with Q, the quantized BRST
operator, modulo observables which are themselves commutators with Q. Physical states are
then defined to be states annihilated by Q modulo those in the image of Q. (Further aspects of
BRST quantum dynamics, including the gauge fixing necessary in the path integral approach,
are described in [22, 29, 30].)

4. The modified procedure for a class of open constraint algebras

In this section, we construct the analogue of the BRST procedure for the case where the
constraints and reduced phase space are those of section 2, corresponding to a one-dimensional
subgroup H of our m-dimensional symmetry group G. The operator will be expressed in a
form that allows gauge fixing and path-integral quantization as in [10, 29].

Proceeding directly with the G � H action on N ′ = N × T ∗(H) with constraint map
whose components are the constraint functions Tα, Tr and vα − Tα = 0, we obtain the BRST
operator

Q = ηaTa + θ(vα − Tα) − 1
2ηaηbCc

abπc + θαηrCs
αrπs (15)

acting on the space �(g∗) ⊗ �(g) ⊗ F(N ′) ⊗ �(h∗) ⊗ �(h). (Here as in section 3 we use
πα, ηa for elements of g and g∗, while for the copy of h and its dual h∗ corresponding to the
second factor in G � H we use ρα and θα). If we define the function Lα by

Lα = {
ηaTa − 1

2ηaηbCc
abπc, πα

} = Tα − Cs
αrη

rπs, (16)

the BRST operator can be expressed in the form

Q = ηaTa − 1
2ηaηbCc

abπc − θα(Lα − vα). (17)
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This operator can be expressed as the sum of two commuting operators QG = ηaTa −
1
2ηaηbCc

abπc and QH = −θα(Lα − vα). (Each of these two parts is canonical, independent
of any choice of basis of g or h.) The cohomology corresponding to QH is acyclic, and
explicitly solved by taking functions which are invariant under ρα and Lα −vα . If we make the
Kalkman transformation [4], that is, we conjugate by exp(−θαπα), we see that an equivalent
cohomology is that of

Q = ηaTa − 1
2ηaηbCc

abπc + θαvα, (18)

where the auxiliary conditions are now ρα = πα and Lα − vα = 0. (This transformation is the
analogue of an extension due to Kalkman [4] of the Mathai–Quillen isomorphism [27] used
in equivariant de Rham theory.)

This is one possible formulation of the BRST operator of the theory. We will now use
some techniques from equivariant de Rham theory, which are also valid in this context, to give
an alternative formulation which allows quantization including a method for implementing
the auxiliary conditions by gauge fixing and corresponds to the BRST operator for reducible
symmetries. Some terminology is required, which is summarized in appendix B, following
the book of Guillemin and Sternberg [21] where more details may be found.

The space �(g∗) ⊗ �(g) ⊗ F(N ) can be given the structure of an H ∗ algebra
(definition B.1): the h̃ action is defined by setting iα to act as a Poisson bracket with πα, d

to be the BRST operator QG and Lα to act as a Poisson bracket with Lα = Tα + Cs
αrη

rπs ,
while the H action is defined to be the adjoint action on g, the co-adjoint action on g∗ and
the original H action on N with constraint map Tα . It can further be given the structure of a
W ∗ module (definition B.1) if multiplication by the generator odd generator κα of W is given
by the Poisson bracket with ηα and multiplication by the even generator uα is given by the
Poisson bracket with dηα = − 1

2Cα
abη

aηb.
Another W ∗ module F may be defined by setting

F = F(T ∗(H)) ⊗ �(h∗) ⊗ �(h) = F(T ∗(H) × R
0,2l ). (19)

Taking coordinates vα,wα, θα and ρα on T ∗(H) × R
0,2l as before, the H ∗ structure of F

is defined by letting iFα act as a Poisson bracket with −ρα, LFα with −vα and dF with∑l
α=1 θαvα , while H acts trivially on h and h∗ and naturally on T ∗(H). The W action

on F is defined by letting the generator κα of h∗ act as a Poisson bracket with θα , while
the generators uα of W act by the Poisson bracket with wα . The basic cohomology of
Q ⊗ 1 + 1 ⊗ DF on �(g∗) ⊗ �(g) ⊗ F(N ) ⊗ F , that is, the cohomology on the subspace
of �(g∗) ⊗ �(g) ⊗ F(N ) ⊗ F whose elements have zero Poisson bracket with Lα − vα

and with πα − ρα , is then the BRST cohomology of the doubly reduced phase space in the
form (18). By theorem B.2, if we take E to be the Weil algebra S(h∗) ⊗ �(h∗) of H we see
that an alternative form of the BRST cohomology is the basic cohomology of

ηaTa − 1
2ηaηbCc

abπc + uαρα, (20)

a form which suggests a close analogy with equivariant de Rham cohomology. (In this case
the basic conditions are zero Poisson bracket with Lα and with πα + ρα .) A gauge-fixing
procedure which implements these basic conditions is constructed in [30].

A further possibility is the Cartan model, constructed by taking the Kalkman
transformation as before, which this time gives the BRST operator in the form

ηaTa − 1
2ηaηbCc

abπc + θαLα + uαρα − uαπα, (21)

with basic condition Lα = 0, ρα = 0 which is the same as the cohomology of
ηaTa − 1

2ηaηbCc
abπc − uαπα on Lα invariant elements of �(g∗) ⊗ �(g) ⊗ F(N ) ⊗ S(h∗).
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5. Reducible symmetry

In this section, the notion of reducible symmetry as introduced by Batalin and Vilkovisky
[1, 2] is related to the constrained systems whose reduced phase space and BRST quantization
is considered in sections 2 and 4. The aim is, using somewhat informal terminology based on
the Lagrangian approach, to show how the particular class of the constrained system studied
in this paper relates to the notion of reducible symmetry. As already remarked, the work
of Batalin and Vilovisky on systems with reducible symmetries included the development of
what has become known as BV quantization, an extension of the BRST technique, which gave
a consistent functional integral expression for the vacuum expectation value of theories with
reducible constraints (and has additionally led to a number of interesting developments in
mathematics and physics, involving the master equation and odd symplectic manifolds, which
are not considered in this paper). These methods were further studied by Fisch, Henneaux,
Stasheff and Teitelboim [3] who gave an algebraic analysis of the BRST operator in terms of
Koszul–Tate resolutions. A full account of these ideas may be found in the book of Henneaux
and Teitelboim [22], while an example of such a system is considered in section 6.

For simplicity, so that the basic algebraic features are clear, we will restrict the discussion at
this stage to a quantum mechanical system where the symmetry of the system corresponds to
a finite-dimensional group G acting on the fields xi(t), i = 1, . . . , n of the system. (The
appendix shows how this may be extended to some infinite-dimensional group actions.)
Suppose that corresponding to a basis {ξa|a = 1, . . . , m = dim G} of the Lie algebra g

of G the infinitesimal action of the group element 1 +
∑m

a=1 εaξa is

δεx
i =

m∑
a=1

εa(t)Ra
i(x), (22)

where the Ra
i satisfy

Ra
j ∂

∂xj

(
Rb

i
) − Rb

j ∂

∂xj

(
Ra

i
) =

m∑
c=1

Cc
abRc

i, (23)

with Cc
ab being the structure constants of g as before. If the action of a system is

S(x(·)) =
∫

dt L(xi(t), ẋi(t)) (24)

and
n∑

i=1

Ra
i δL

δxi
= 0 for a = 1, . . . , m, (25)

where δL
δxi = ∂L

∂xi − d
dt

(
∂L

∂ẋi

)
, then the action is invariant under the action of G and there are

conserved Noether currents

Ja = Ra
i ∂L

∂ẋi
(26)

which under Legendre transformation becomes constraints

Ta = Ra
ipi = 0, (27)

where pi, i = 1, . . . , n, are the conjugate momenta of xi . These constraints are first class and
obey the algebra

{Ta, Tb} =
m∑

c=1

Cc
abTc. (28)

As before we assume that the number n of fields is at least as large as the dimension m of G.
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If the m vectors Ra are linearly independent for all x, or equivalently the matrix
(
Ra

i
)

has
rank m, the system is said to have an irreducible symmetry, and the BRST procedure described
in section 3 is applicable. A reducible symmetry occurs when the matrix has rank m − l,
with l > 0, in which case the group property (23) of the infinitesimal transformations will
not in general be satisfied. The concept of reducible symmetry was first identified by Batalin
and Vilkovisky [1, 2]. In this paper, we are concerned with reducible systems for which the
infinitesimal transformations Ra

i are of the form

Ra
i =

m∑
b=1

Ma
bUb

i, (29)

where
(
Ma

b
)

is an m × m matrix of rank m − l with 0 < l < m and the elements Ub
i have

maximal rank m and do satisfy the group property, that is,

Ua
j ∂

∂xj

(
Ub

i
) − Ub

j ∂

∂xj

(
Ua

i
) =

m∑
c=1

Cc
abUc

i . (30)

(It may be conjectured that all reducible symmetries take this form.) As a result there are l
non-trivial linear relations of the form

m∑
a=1

λa
αRa = 0 α = 1, . . . , l, (31)

where Ra denotes the vector
(
Ra

i
)

so that there are of course only m − l independent
transformations, which will not in general form a Lie algebra. (Recent discussions of Noether’s
second theorem [24, 33] consider related issues.) By a suitable choice of basis we can set

Rα = 0, α = 1, . . . , l and Rr = Ur r = 1 + l, . . . , m. (32)

On passing to the Hamiltonian formulation of the system, there will be m − l constraints

Tr ≡ Ur
ipi = 0 r = 1 + l, . . . , m, (33)

which in general will not form a first class system. Corresponding to the ‘missing’ Noether
currents Uα, α = 1, . . . , l there are functions Tα which are not constrained to be zero. This
leads to the modified reduction process described in section 2, involving an extended phase
space, and thence to the modified BRST quantization constructed in section 4 which is
equivalent to the BRST operator obtained by the algebraic techniques of BV quantization
[1–3, 22].

Chemla and Kalkman [5] have shown that the BRST operator for certain topological
theories corresponds to that for a system of reducible symmetries, using the transformation
exp(θαπα) which we also use in this paper. We have derived this result in a more general
context directly from the constraints of the system. Outstanding questions include analysing
whether all reducible symmetries lead to constrained systems of this nature. In the following
section, we give an example of the equivariant BRST quantization of a particular system.

6. An example

As an example of the structures described in sections 2 and 4, a topological model will now be
described. The setting of this model is an n-dimensional Riemannian manifold M with metric
g on which there is an isometric U(1) action generated by a Killing vector X. The classical
action for this model is

S(x(.)) =
∫ t

0
vx∗X̃, (34)
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where x : [0, t] → M is a path in M, X̃ is the one form dual to X via g and v is a constant.
Using local coordinates xi, i = 1, . . . , n on M the action takes the form

S(x(.)) =
∫ t

0
vXi(x(t))ẋi(t) dt, (35)

where Xi = gijX
j are the components of X̃. The variational derivative of the Lagrangian

L(x, ẋ) = vXi(x)ẋi is
δL

δxi
= 2vDjXiẋ

j = −2vDiXj ẋ
j , (36)

where D denotes covariant differentiation with respect to the Levi-Civita connection of the
metric g, so that the Lagrangian is invariant under infinitesimal transformations δxi = εi if
εi satisfies εiXi = 0. This gives n reducible symmetries with one linear-dependence relation.
(It is here that the importance of X being a Killing vector first appears, since this ensures that
1
2 (∂iXj − ∂jXi) = DiXj = −DjXi .)

Proceeding to the Euclidean time Hamiltonian formalism, the conjugate momentum to xi

is

pi = ivXi, (37)

and we see that the system has n first class constraints Ti ≡ pi − ivXi = 0, which are of
the general form (8) but in a geometrically natural basis rather than an h, k basis. It is also
necessary to regard v as a dynamical variable rather than a constant. (Whether this is a general
feature of the constraints of a system with reducible symmetry is a question which needs
further exploration.) As expected the constraints of this system do not form a closed algebra;
using the standard symplectic form in the phase space T ∗M gives

{Ti, Tj } = 2ivDiXj . (38)

This situation corresponds to that considered in sections 2, 4 and 5 (in the local version
described in appendix A) with G̃ the diffeomorphism group of M and H the group U(1)

acting on M. The group G which acts locally is then, as in example A.1, the n-dimensional
translation group R

n with constraint map Ti = pi . To see that the Lie algebra of H has the
required property, let y be a point in M where X is not zero and {X} ∪ {ξr |r = 2, . . . , n} be
a basis of the tangent space at y with each ξr orthogonal to X. Then, because X is a Killing
vector, it can be shown that [ξr , X] is also orthogonal to X. Thus, if we identify k as the span
of {ξr |r = 2, . . . , n} and h as the span of {X} we see that [h, k] ⊂ k as required.

In this case we have an S1 extension, so that the modified BRST procedure of section 4
gives as a BRST operator

Q = ηipi + uρ, (39)

with auxiliary conditions ρ = π andL = 0. (Since H is one-dimensional we drop the index α.)
On quantization we obtain the differential in the Weil model of equivariant cohomology of M
under the U(1) action generated by X. The full quantization of this model, using the Kalkman
form [4], including gauge fixing, has been described in [30]. The model constructed in this
section is equivalent to that constructed by Witten [10], as can be shown by integrating out
the u, v, θ and ρ variables or by conversion to the Cartan model. It is also the same as that
obtained by Chemla and Kalkman [5]. The derivation given in this section shows how the
model can be understood as the BRST quantization of a simple classical model, with the
conditions ρ = π and L = 0 emerging from the physics.
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Appendix A. The local group action and the non-uniqueness of the constraints

In section 2, the standard approach to the reduced phase space of a constrained Hamiltonian
system was described, together with a modification for a more general set of constraints than
a standard first class set.

Even in the standard setting we have glossed over a difficulty which seems so far to have
received a rather incomplete treatment in the literature. This relates to the non-uniqueness
of the constraint functions used to define the constraint submanifold, and hence the reduced
phase space. This non-uniqueness is a simple consequence of the fact that the constraints
can be multiplied by arbitrary nowhere-zero functions and still define the same constraint
submanifold, and satisfy a closed constraint algebra, although this will vary with the choice
of functions, and generally not form a finite-dimensional Lie algebra. More fundamentally, it
relates to the fact that it is gauge or local symmetries which lead to the constrained Hamiltonian
systems discussed in this paper.

In this appendix, we address these issues by describing the reduction process for the
case where the action of the finite group G can only be identified locally, although there is
a group G̃ (of infinite dimension) which acts globally on N . It will emerge that essentially
the same construction of a reduced phase space can be made in this more general setting
provided that the G̃ action has properties which we will now define. (In the example below
G is a diffeomorphism group, and we also have in mind the situation where G̃ is the group
of automorphisms of a fibre bundle, a so-called gauge group, but it is possible that even
more general situations may occur, and so the properties required are those that are essential.)
Suppose that G̃ is a Lie group which acts symplectically on N and that there is an open cover
{Uσ |σ ∈ �} of N and, for each σ in �, a neighbourhood Vσ of the identity of G such that Vσ

acts locally on Uσ in the following sense: there is a map Vσ × Uσ → N , (g, y) → gy such
that if g, h and gh are in Vσ and y, hy are in Uσ then (gh)y = g(hy). It is also required that
the local G action is free, although the global G̃ action may have fixed points. Also suppose
that this local G action is compatible with the G̃ action in that if η̃ is an element of g̃, the Lie
algebra of G̃, then, for each basis {ξa|a = 1, . . . , m} of g (the Lie algebra of the finite group
G) and each σ ∈ � there exist m functions qa

η̃σ : Uσ → R, a = 1, . . . , m such that for every
f in F(N )

η̃f
∣∣
Uσ

= qa
η̃σ ξaf

∣∣
Uσ

. (A.1)

(Here we again use the notation that η̃ denotes the vector field on N corresponding to the
element η̃ of g̃, and so on.)

This group action is said to be Hamiltonian if both the global G̃ action and the local G
action have constraint maps, denoted T̃ and Tσ respectively, with

T̃η̃|Uσ
= qa

η̃σ Tσ a. (A.2)

The number of independent constraints is equal to the dimension of G rather than G̃.
An example of this structure will now be described.

Example A.1. Suppose that N is the cotangent bundle T ∗M of an n-dimensional manifold
M, G̃ is the diffeomorphism group of M (which acts naturally on T ∗M) and G is the n-
dimensional translation group Tr(n). (As a manifold this group is simply R

n.) We construct
the open cover {Uσ |σ ∈ �} of T ∗M from an open cover {Wσ |σ ∈ �} of M by coordinate
neighbourhoods, setting Uσ = T ∗Wσ . We then define the local action of G = Tr(n) by
(xi, pj ) → (xi + t i , pj ), where xi, i = 1, . . . , n are local coordinates on Wσ, (xi, pi) are the
corresponding local coordinates on T ∗Wσ and t i , i = 1, . . . , n is a sufficiently small element
of R

n. The local constraint maps for the G action are Ti = pi . The Lie algebra of the
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diffeomorphism group of M may be identified with the set of vector fields on M. If Y is a
vector field on M with local coordinate expression Y = Y i ∂

∂xi , then the global constraint map
for η is

T̃Y = Y ipi. (A.3)

The two-stage process leading to the reduced phase space can be carried out as before; in
the case where N has dimension 2n and the local group G has dimension m, the reduced phase
space will have dimension 2(n−m). In terms of constraints, by proceeding to the larger group
G̃, and allowing for the possibility of a local rather than global action by the finite group G,
we have explained the observed multiple possibilities both for the set of constraints and for
the algebra they form [22].

The modified reduced phase space corresponding to a subgroup H of G can also be handled
in this more general setting. The requirement is a finite-dimensional subgroup H of the global
group which locally has the properties (5). We can locally define the reduced phase space as
before, except that there will be singularities at fixed points of H. Since (as will emerge from
the example in section 6) we can construct a non-singular BRST operator even in this situation,
following the procedure which would be valid were there no fixed points, we will regard the
BRST quantization scheme as the more fundamental object, and not pause to consider a fuller
definition of the reduced phase space in this context.

Appendix B. The Weil algebra of H and related constructions

In this appendix, we gather some definitions and a theorem from equivariant de Rham theory,
using the book of Guillemin and Sternberg [21] where more details can be found.

Definition B.1. Given an Abelian one-dimensional Lie group H with Lie algebra h,

(a) the super Lie algebra h̃ is defined to be the algebra h̃ = h−1 ⊕ h0 ⊕ h1 where h−1 is a
one-dimensional vector space with basis i1, . . . , il, h−1 is a one-dimensional vector space
with basis L1, . . . , Ll and h1 is one-dimensional with basis d and all Lie brackets are
trivial except [d, iα] = Lα .

(b) A H ∗ module is a super vector space A together with a linear representation of φ of H
on A and a homomorphism of h̃ → End A

which obey the consistency conditions:

d

dt
φ(exp(tξ))

∣∣∣∣
t=0

= Lξ ,

φ(a)Lξφ(a−1) = LAdaξ ,

φ(a)iξφ(a−1) = iAdaξ ,

φ(a) dφ(a−1) = d.

(B.1)

(c) The Weil algebra W of the group H is the algebra S(h∗) ⊗ �(h∗). The super algebra h̃

acts on W by superderivations with the only non-zero action on generators given by

iα(1 ⊗ κα) = 1 ⊗ 1

d(1 ⊗ κα) = uα ⊗ 1,
(B.2)

where κα are generators of �(h∗) and uα are generators of S(h∗).
(d) A W ∗ module for the group H is an H ∗ module E which is also a W module, with the map

W ⊗ E → E a morphism of H ∗ modules.
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(e) Corresponding algebra structures are defined when the vector spaces are algebras, H
acts by automorphisms and h̃ by superderivations.

A key theorem in equivariant de Rham theory is also valid in the form stated here. It allows
the construction of alternative models of the equivariant BRST cohomology. The proof may
be found in [21].

Theorem B.2. Suppose that E and F are acyclic W ∗ algebras and that A is a W ∗ module.
Then the cohomology of basic elements of A×E with respect to DA ⊗ 1 + 1 ⊗DE is the same
as that of basic elements of A×F with respect to DA ⊗1+1⊗DF , where an element of A⊗E

or A ⊗ F is said to be basic if it is annihilated by both iα ⊗ 1 + 1 ⊗ iα and Lα ⊗ 1 + 1 ⊗ Lα .
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